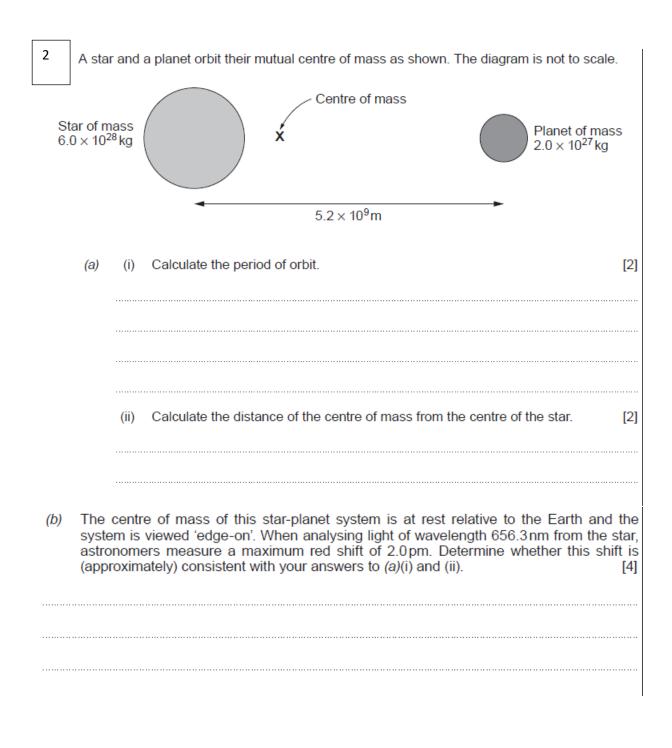
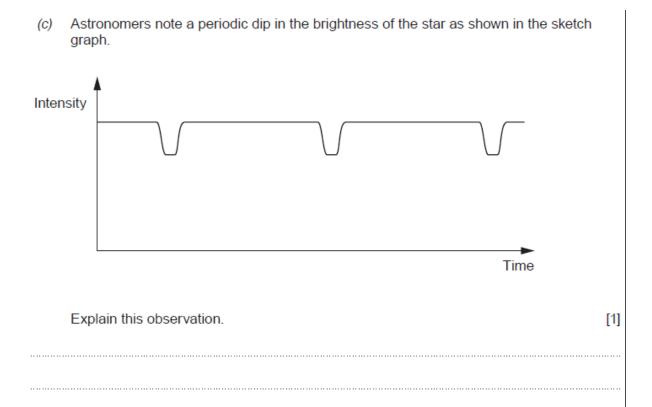

GCE PHYSICS

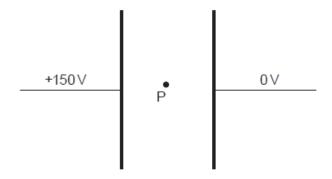
S21-A420QS

Assessment Resource number 15 Electricity and the Universe Resource F


The variation in gravitational potential near Pluto is shown by the graph.


Distance from centre of Pluto (in Pluto radii)

- (a) Assuming that the potential at the surface is correct, confirm that the potential at 3r is plotted correctly. [2]
- (b) (i) Calculate the gravitational potential energy of a spacecraft of mass 600 kg at rest on the surface. [2]


	(ii)	'Escape velocity' is defined as the minimum velocity required for a body to esca from the gravitational influence of a massive body. Calculate the 'escape veloci of the spacecraft.	
(c)	0.62	radius of Pluto is 1.18×10^6 m and the gravitational field strength at the surface N kg ⁻¹ . Using this information and by drawing a suitable tangent show that titational field strength at $2r$ agrees with the theoretical value given by:	
		$g \propto \frac{1}{r^2}$	[4]

<i>_</i> (a)	State one similarity and one difference between gravitational and electric fields.	[2]

(b) Two parallel vertical metal plates are placed 5.0 cm apart in a vacuum as shown. A pd of $150\,\mathrm{V}$ is placed across the plates and a small sphere of mass $9.6\times10^{-15}\,\mathrm{kg}$ carrying a charge of $-2.4\times10^{-17}\,\mathrm{C}$ is placed at point P. A side-on view of the arrangement is shown.

(i) Show that the two forces acting on the sphere are approximately $9\times10^{-14}\,\rm N$ vertically and $7\times10^{-14}\,\rm N$ horizontally.

[3]

	(ii)	Draw, in the space below, a free body diagram for the sphere, showing the magnituand direction of the two forces acting on it. Determine the direction with which sphere will move away from P and include this on your diagram.	
(c)	Calc	ulate the time taken for the sphere to travel a distance of 2.0 cm.	[4]